

The Thirteenth International Conference on Sensor Device Technologies and Applications SENSORDEVICES 2022- Lisbon, Portugal

Room temperature metal oxides based gas sensors for detecting fish freshness

Kaidi Wu^{a,b}, Marc Debliquy^b, Chao Zhang^a

a College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China b Materials Science Department, Faculty of Engineering, University of Mons, 20 Place du Parc, Mons, Belgium

E-mail: kaidi.wu@student.umons.ac.be; wkdlights@gmail.com

Contents

Backgrounds

Research work

Conclusions

Perspective

Background

Source: Historical data 1950-2010: FAO. 2014. "FishStatJ." Rome: FAO. Projections 2011-2050: Calculated at WRI, assumes 10 percent reduction in wild fish catch between 2010 and 2050, and linear growth of aquaculture production at an additional 2 million tons per year between 2010 and 2050.

e www.wri.org/publication/improving-aquaculture for full paper.

🋞 WORLD RESOURCES INSTITUT

Unsaturated fatty acid

Soluble protein

Dense connective tissue and fascia wrap

Endogenous enzymes

Fish freshness and food safety

Physical and chemical analysis

Traditional methods (Destructive testing)

Professionals; strong subjectivity **Detection and Assessment:** Rapid Nondestructive High cost; Low cost Difficult to operate; Poor qualitative ability;

Frequent maintenance

Indicators: Released gases from spoiled fish

Reduced flavor Food safety risks Transportation Storage

Introduction of Metal Oxides Semiconductor (MOS) gas sensors

- Gas concentration sensing range of several common gas sensors
- Gas adsorption induces electrical conductivity variations Δσ = f(C_{gas})
 Resistance measurement = C_{gas} measurement

Contents

Backgrounds

Research work

3

2

Conclusions

Perspective

Gas sensor test system

(1) WO₃-Bi₂WO₆ microflowers based H₂S sensor

Scheme 1. Synthesis mechanism of pristine Bi₂WO₆ and WO₃-Bi₂WO₆. Fig. 1.1. X-ray Powder Diffraction (XRD) patterns of pure Bi₂WO₆ and WO₃-Bi₂WO₆ composites.

WO₃-Bi₂WO₆ microflowers based H₂S sensor

Bi₂WO₆ nanosheets

10wt% microflowers

(c)

20wt% microflowers

500 n

500 nn

500 nm

30wt% microflowers

40wt% microflowers

Fig. 1.2. Scanning electron microscope (SEM) images.

Fig. 1.3. Transmission electron microscope (TEM) images. 11

WO₃-Bi₂WO₆ microflowers based H₂S sensor

Fig. 1.6. (a, b) Dynamic sensing performance of three gas sensors to 2–50 ppb H₂S at room temperature; (c) response values and the fitted curves of three gas sensors versus H₂S concentration. 13

Fig. 1.8. Detecting the volatiles from 10 g Pangasius after storage for 0, 12 and 24 h.

Microwave assisted hydrothermal synthesis

Nanostructure details

Practical application

Scheme 2. Schematical diagram of the fish freshness detection system.

Fig. 2.2. Responses of the 0.43 at% Ce-TiO₂ gas sensor towards the released gases from 25 g

Pangasius fillet during different stages (1, 6, 12, 18, 24 h).

Contents

Backgrounds

Research work

Conclusions

Perspective

1. A series of gas sensors based on metal oxides for detecting the released gases (H_2S and

NH₃) during fish spoilage process were developed.

- 2. WO_3 -Bi₂ WO_6 microflowers based gas sensor showed good sensing properties to ppblevel H₂S.
- 3. Ce-TiO₂ nanocrystals showed good sensing properties to low-concentration NH_3 .
- The practical application potential of as-fabricated gas sensors was verified by detecting fish spoilage.

Contents

Backgrounds

Research work

Conclusions

Perspective

Next work

Mo-based TMA gas sensor—ppm level (>10×10⁻⁶)

Gas sensing tests

Practical application

National Construction High-level University Public Postgraduate Program of China

Outstanding Doctoral Dissertation Fund Project of Yangzhou University

